Electrolyte Engineering for Sodium Metal Batteries

PDF Publication Title:

Electrolyte Engineering for Sodium Metal Batteries ( electrolyte-engineering-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

Batteries 2022, 8, 157 23 of 26 37. Liang, J.; Wu, W.; Xu, L.; Wu, X. Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton. Carbon 2021, 176, 219–227. 38. Mo, L.; Chen, A.‐L.; Ouyang, Y.; Zong, W.; Miao, Y.‐E.; Liu, T. Asymmetric Sodiophilic Host Based on a Ag‐Modified Carbon Fiber Framework for Dendrite‐Free Sodium Metal Anodes. ACS Appl. Mater. Interfaces 2021, 13, 48634–48642. 39. Yang, W.; Yang, W.; Dong, L.; Shao, G.; Wang, G.; Peng, X. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three‐dimensional skeleton for dendrite‐free sodium metal anodes. Nano Energy 2021, 80, 105563. 40. Ye, S.; Wang, L.; Liu, F.; Shi, P.; Yu, Y. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. eScience 2021, 1, 75–82. 41. Liu, T.; Yang, X.; Nai, J.; Wang, Y.; Liu, Y.; Liu, C.; Tao, X. Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. Chem. Eng. J. 2021, 409, 127943. 42. Ma, B.; Bai, P. Fast Charging Limits of Ideally Stable Metal Anodes in Liquid Electrolytes. Adv. Energy Mater. 2022, 12, 2102967. 43. Zhao, W.; Guo, M.; Zuo, Z.; Zhao, X.; Dou, H.; Zhang, Y.; Li, S.; Wu, Z.; Shi, Y.; Ma, Z. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite‐free and high‐rate sodium‐ion battery. Engineering 2022, 11, 87–94. 44. Zheng, X.; Gu, Z.; Fu, J.; Wang, H.; Ye, X.; Huang, L.; Liu, X.; Wu, X.; Luo, W.; Huang, Y. Knocking down the kinetic barriers towards fast‐charging and low‐temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947. 45. Wang, S.; Liu, Y.; Lu, K.; Cai, W.; Jie, Y.; Huang, F.; Li, X.; Cao, R.; Jiao, S. Engineering rGO/MXene hybrid film as an anode host for stable sodium‐metal batteries. Energy Fuels 2021, 35, 4587–4595. 46. Yang, H.; Zhang, L.; Wang, H.; Huang, S.; Xu, T.; Kong, D.; Zhang, Z.; Zang, J.; Li, X.; Wang, Y. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J. Colloid Interface Sci. 2022, 611, 317–326. 47. Wang, R.; Han, H.‐H.; Liu, F.‐Q.; Jia, S.‐X.; Xiang, T.‐Q.; Huo, H.; Zhou, J.‐J.; Li, L. Sulfonated poly (vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode. Electrochim. Acta 2022, 406, 139840. 48. Cheng, Y.; Yang, X.; Li, M.; Li, X.; Lu, X.; Wu, D.; Han, B.; Zhang, Q.; Zhu, Y.; Gu, M. Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination. Nano Lett. 2022, 22, 4347–4353. 49. Hu, X.F.; Matios, E.; Zhang, Y.W.; Wang, C.L.; Luo, J.M.; Li, W.Y. Deeply Cycled Sodium Metal Anodes at Low Temperature and in Lean Electrolyte Conditions. Angew. Chem. Int. Ed. 2021, 60, 5978–5983. 50. Wang, Y.; Jiang, R.; Liu, Y.; Zheng, H.; Fang, W.; Liang, X.; Sun, Y.; Zhou, R.; Xiang, H. Enhanced Sodium Metal/Electrolyte Interface by a Localized High‐Concentration Electrolyte for Sodium Metal Batteries: First‐Principles Calculations and Experimental Studies. ACS Appl. Energy Mater. 2021, 4, 7376–7384. 51. Fang, W.; Jiang, R.; Zheng, H.; Zheng, Y.; Sun, Y.; Liang, X.; Xiang, H.F.; Feng, Y.Z.; Yu, Y. Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive. Rare Met. 2021, 40, 433–439. 52. Matios, E.; Wang, H.; Luo, J.; Zhang, Y.; Wang, C.; Lu, X.; Hu, X.; Xu, Y.; Li, W. Reactivity‐guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. J. Mater. Chem. A 2021, 9, 18632–18643. 53. Oh, J.A.S.; Wang, Y.M.; Zeng, Q.B.; Sun, J.G.; Sun, Q.M.; Goh, M.; Chua, B.; Zeng, K.Y.; Lu, L. Intrinsic low sodium/NASICON interfacial resistance paving the way for room temperature sodium‐metal battery. J. Colloid Interf. Sci. 2021, 601, 418–426. 54. Xu, P.; Li, X.; Yan, M.‐Y.; Ni, H.‐B.; Huang, H.‐H.; Lin, X.‐D.; Liu, X.‐Y.; Fan, J.‐M.; Zheng, M.‐S.; Yuan, R.‐M. A highly reversible sodium metal anode by mitigating electrodeposition overpotential. J. Mater. Chem. A 2021, 9, 22892–22900. 55. Zheng, X.; Huang, L.; Ye, X.; Zhang, J.; Min, F.; Luo, W.; Huang, Y. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem‐Us 2021, 7, 2312–2346. 56. Fan, L.; Li, X. Recent advances in effective protection of sodium metal anode. Nano Energy 2018, 53, 630–642. https://doi.org/10.1016/j.nanoen.2018.09.017. 57. Matios, E.; Wang, H.; Wang, C.; Li, W. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A review. Ind. Eng. Chem. Res. 2019, 58, 9758–9780. 58. Oh, J.A.S.; He, L.; Chua, B.; Zeng, K.; Lu, L. Inorganic sodium solid‐state electrolyte and interface with sodium metal for room‐ temperature metal solid‐state batteries. Energy Storage Mater. 2021, 34, 28–44. 59. Lee, B.; Paek, E.; Mitlin, D.; Lee, S.W. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chem. Rev. 2019, 119, 5416–5460. https://doi.org/10.1021/acs.chemrev.8b00642. 60. Liu, W.; Liu, P.; Mitlin, D. Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes. Adv. Energy Mater. 2020, 10, 2002297. https://doi.org/10.1002/aenm.202002297. 61. Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C.; Janek, J.; Schroder, D.; Wang, G. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High‐Energy Batteries. Adv. Mater. 2020, 32, e1903891. https://doi.org/10.1002/adma.201903891. 62. Seh, Z.W.; Sun, J.; Sun, Y.; Cui, Y. A Highly Reversible Room‐Temperature Sodium Metal Anode. ACS Cent. Sci. 2015, 1, 449– 455. https://doi.org/10.1021/acscentsci.5b00328. 63. Zhu, M.; Zhang, Y.; Yu, F.; Huang, Z.; Zhang, Y.; Li, L.; Wang, G.; Wen, L.; Liu, H.K.; Dou, S.X.; et al. Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. Nano Lett. 2021, 21, 619–627. https://doi.org/10.1021/acs.nanolett.0c04158. 64. Wang, H.; Yu, Z.; Kong, X.; Kim, S.C.; Boyle, D.T.; Qin, J.; Bao, Z.; Cui, Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 2022, 6, 588–616.

PDF Image | Electrolyte Engineering for Sodium Metal Batteries

PDF Search Title:

Electrolyte Engineering for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Salgenx

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)