PDF Publication Title:
Text from PDF Page: 022
Batteries 2022, 8, 157 22 of 26 7. Vivo‐Vilches, J.F.; Karakashov, B.; Celzard, A.; Fierro, V.; El Hage, R.; Brosse, N.; Dufour, A.; Etienne, M. Carbon Monoliths with Hierarchical Porous Structure for All‐Vanadium Redox Flow Batteries. Batteries 2021, 7, 55. 8. Zhou, J.; Zhuang, H.L.; Wang, H. Layered tetragonal zinc chalcogenides for energy‐related applications: From photocatalysts for water splitting to cathode materials for Li‐ion batteries. Nanoscale 2017, 9, 17303–17311. 9. Gao, L.; Chen, S.; Zhang, G.; Dai, Z.; Yan, D.; Yang, H.Y.; Yu, C.; Bai, Y. Improved thermal and structural stabilities of LiNi0. 6Co0. 2Mn0. 2O2 cathode by La2Zr2O7 multifunctional modification. Appl. Phys. Lett. 2021, 119, 093902. 10. Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high‐energy density lithium‐ ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328. 11. Xie, J.P.; Li, X.D.; Lai, H.J.; Zhao, Z.J.; Li, J.L.; Zhang, W.G.; Xie, W.G.; Liu, Y.M.; Mai, W.J. A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic‐Sulfide‐Containing Potassium‐Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 14740–14747. 12. Xie, J.; Li, J.; Li, X.; Lei, H.; Zhuo, W.; Li, X.; Hong, G.; Hui, K.N.; Pan, L.; Mai, W. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K‐ion batteries. CCS Chem. 2021, 3, 791–799. 13. Ma, K.; Liu, Y.; Jiang, H.; Hu, Y.; Si, R.; Liu, H.; Li, C. Multivalence‐ion intercalation enables ultrahigh 1T phase MoS2 nanoflowers to enhanced sodium‐storage performance. CCS Chem. 2021, 3, 1472–1482. 14. Mohsin, I.U.; Ziebert, C.; Rohde, M.; Seifert, H.J. Thermophysical characterization of a layered P2 type structure Na0.53MnO2 cathode material for sodium ion batteries. Batteries 2021, 7, 16. 15. Li, X.D.; Liu, Z.B.; Li, J.L.; Lei, H.; Zhuo, W.C.; Qin, W.; Cai, X.; Hui, K.N.; Pan, L.K.; Mai, W.J. Insights on the mechanism of Na‐ ion storage in expanded graphite anode. J. Energy Chem. 2021, 53, 56–62. 16. Dong, S.; Lv, N.; Wu, Y.; Zhang, Y.; Zhu, G.; Dong, X. Titanates for sodium‐ion storage. Nano Today 2022, 42, 101349. 17. Yang, C.; Xin, S.; Mai, L.; You, Y. Materials design for high‐safety sodium‐ion battery. Adv. Energy Mater. 2021, 11, 2000974. 18. Lyu, T.; Lan, X.; Liang, L.; Lin, X.; Hao, C.; Pan, Z.; Tian, Z.Q.; Shen, P.K. Natural mushroom spores derived hard carbon plates for robust and low‐potential sodium ion storage. Electrochim. Acta 2021, 365, 137356. 19. Liu, Q.; Xu, R.; Mu, D.; Tan, G.; Gao, H.; Li, N.; Chen, R.; Wu, F. Progress in electrolyte and interface of hard carbon and graphite anode for sodium‐ion battery. Carbon Energy 2022, 4, 458–479. 20. Maça, R.R.; Etacheri, V. Effect of vinylene carbonate electrolyte additive on the surface chemistry and pseudocapacitive sodium‐ ion storage of TiO2 nanosheet anodes. Batteries 2020, 7, 1. 21. Chu, C.; Li, R.; Cai, F.; Bai, Z.; Wang, Y.; Xu, X.; Wang, N.; Yang, J.; Dou, S. Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 2021, 14, 4318–4340. https://doi.org/10.1039/d1ee01341f. 22. Yuan, X.R.; Chen, S.M.; Li, J.L.; Xie, J.P.; Yan, G.H.; Liu, B.T.; Li, X.B.; Li, R.; Pan, L.K.; Mai, W.J. Understanding the improved performance of sulfur‐doped interconnected carbon microspheres for Na‐ion storage. Carbon Energy 2021, 3, 615–626. 23. Zhang, Y.J.; Li, J.L.; Ma, L.; Li, H.B.; Xu, X.T.; Liu, X.J.; Lu, T.; Pan, L.K. Insights into the storage mechanism of 3D nanoflower‐ like V3S4 anode in sodium‐ion batteries. Chem. Eng. J. 2022, 427, 130936. 24. Sun, Y.; Yang, Y.; Shi, X.‐L.; Suo, G.; Xue, F.; Liu, J.; Lu, S.; Chen, Z.‐G. N‐doped silk wadding‐derived carbon/SnOx@ reduced graphene oxide film as an ultra‐stable anode for sodium‐ion half/full battery. Chem. Eng. J. 2022, 433, 133675. 25. Park, J.; Sharma, J.; Jafta, C.J.; He, L.; Meyer III, H.M.; Li, J.; Keum, J.K.; Nguyen, N.A.; Polizos, G. Reduced Graphene Oxide Aerogels with Functionalization‐Mediated Disordered Stacking for Sodium‐Ion Batteries. Batteries 2022, 8, 12. 26. Jiang, B.; Wei, Y.; Wu, J.; Cheng, H.; Yuan, L.; Li, Z.; Xu, H.; Huang, Y. Recent progress of asymmetric solid‐state electrolytes for lithium/sodium‐metal batteries. EnergyChem 2021, 3, 100058. 27. Fang, H.Y.; Gao, S.N.; Zhu, Z.; Ren, M.; Wu, Q.; Li, H.X.; Li, F.J. Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries. Chem. Res. Chin. Univ. 2021, 37, 189–199. 28. Li, Z.P.; Zhu, K.J.; Liu, P.; Jiao, L.F. 3D Confinement Strategy for Dendrite‐Free Sodium Metal Batteries. Adv. Energy Mater. 2022, 12, 2100359. 29. Bao, C.Y.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D.L.; Liu, H.K.; Dou, S.X. Solid Electrolyte Interphases on Sodium Metal Anodes. Adv. Funct. Mater. 2020, 30, 2004891. 30. Chen, Q.W.; He, H.; Hou, Z.; Zhuang, W.M.; Zhang, T.X.; Sun, Z.Z.; Huang, L.M. Building an artificial solid electrolyte interphase with high‐uniformity and fast ion diffusion for ultralong‐life sodium metal anodes. J. Mater. Chem. A 2020, 8, 16232– 16237. 31. Zhao, Y.; Goncharova, L.V.; Lushington, A.; Sun, Q.; Yadegari, H.; Wang, B.Q.; Xiao, W.; Li, R.Y.; Sun, X.L. Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Adv. Mater. 2017, 29, 1606663. 32. Lee, J.; Kim, J.; Kim, S.; Jo, C.; Lee, J. A review on recent approaches for designing the SEI layer on sodium metal anodes. Mater. Adv. 2020, 1, 3143–3166. 33. Wang, H.; Liang, J.L.; Wu, Y.; Kang, T.X.; Shen, D.; Tong, Z.Q.; Yang, R.; Jiang, Y.; Wu, D.; Li, X.J.; et al. Porous BN Nanofibers Enable Long‐Cycling Life Sodium Metal Batteries. Small 2020, 16, 2002671. 34. Zhang, Q.; Lu, Y.Y.; Miao, L.C.; Zhao, Q.; Xia, K.X.; Liang, J.; Chou, S.L.; Chen, J. An Alternative to Lithium Metal Anodes: Non‐ dendritic and Highly Reversible Sodium Metal Anodes for Li‐Na Hybrid Batteries. Angew. Chem. Int. Ed. 2018, 57, 14796–14800. 35. Wang, H.; Wu, Y.; Liu, S.; Jiang, Y.; Shen, D.; Kang, T.; Tong, Z.; Wu, D.; Li, X.; Lee, C.S. 3D Ag@C cloth for stable anode free sodium metal batteries. Small Methods 2021, 5, 2001050. 36. Li, L.; Zhu, M.; Wang, G.; Yu, F.; Wen, L.; Liu, H.‐K.; Dou, S.‐X.; Wu, C. An in‐situ generated Bi‐based sodiophilic substrate with high structural stability for high‐performance sodium metal batteries. J. Energy Chem. 2022, 71, 595–603.PDF Image | Electrolyte Engineering for Sodium Metal Batteries
PDF Search Title:
Electrolyte Engineering for Sodium Metal BatteriesOriginal File Name Searched:
batteries-08-00157.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Salgenx
Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing.CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)