PDF Publication Title:
Text from PDF Page: 024
Batteries 2022, 8, 157 24 of 26 65. Yoon, H.; Zhu, H.J.; Hervault, A.; Armand, M.; MacFarlane, D.R.; Forsyth, M. Physicochemical properties of N‐propyl‐N‐ methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Phys. Chem. Chem. Phys. 2014, 16, 12350– 12355. 66. Shi, Q.W.; Zhong, Y.R.; Wu, M.; Wang, H.Z.; Wang, H.L. High‐Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angew. Chem. Int. Ed. 2018, 57, 9069–9072. 67. Cao, R.G.; Mishra, K.; Li, X.L.; Qian, J.F.; Engelhard, M.H.; Bowden, M.E.; Han, K.S.; Mueller, K.T.; Henderson, W.A.; Zhang, J.G. Enabling room temperature sodium metal batteries. Nano Energy 2016, 30, 825–830. 68. Iermakova, D.I.; Dugas, R.; Palacin, M.R.; Ponrouch, A. On the Comparative Stability of Li and Na Metal Anode Interfaces in Conventional Alkyl Carbonate Electrolytes. J. Electrochem. Soc. 2015, 162, A7060–A7066. 69. Rodriguez, R.; Loeffler, K.E.; Nathan, S.S.; Sheavly, J.K.; Dolocan, A.; Heller, A.; Mullins, C.B. In Situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate. ACS Energy Lett. 2017, 2, 2051–2057. 70. Lee, Y.; Lee, J.; Lee, J.; Kim, K.; Cha, A.; Kang, S.; Wi, T.; Kang, S.J.; Lee, H.W.; Choi, N.S. Fluoroethylene Carbonate‐Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High‐Performance Sodium Metal Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 15270–15280. 71. Chen, X.; Shen, X.; Hou, T.Z.; Zhang, R.; Peng, H.J.; Zhang, Q. Ion‐Solvent Chemistry‐Inspired Cation‐Additive Strategy to Stabilize Electrolytes for Sodium‐Metal Batteries. Chem‐Us 2020, 6, 2242–2256. 72. Fang, W.; Jiang, H.; Zheng, Y.; Zheng, H.; Liang, X.; Sun, Y.; Chen, C.H.; Xiang, H.F. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long‐cycle and high‐rate sodium metal battery. J. Power Sources 2020, 455, 227956. 73. Jiang, R.; Hong, L.; Liu, Y.C.; Wang, Y.D.; Patel, S.; Feng, X.Y.; Xiang, H.F. An acetamide additive stabilizing ultra‐low concentration electrolyte for long‐cycling and high‐rate sodium metal battery. Energy Storage Mater. 2021, 42, 370–379. 74. Zheng, X.Y.; Fu, H.Y.; Hu, C.C.; Xu, H.; Huang, Y.; Wen, J.Y.; Sun, H.B.; Luo, W.; Huang, Y.H. Toward a Stable Sodium Metal Anode in Carbonate Electrolyte: A Compact, Inorganic Alloy Interface. J. Phys. Chem. Lett. 2019, 10, 707–714. 75. Kreissl, J.J.A.; Langsdorf, D.; Tkachenko, B.A.; Schreiner, P.R.; Janek, J.; Schroder, D. Incorporating Diamondoids as Electrolyte Additive in the Sodium Metal Anode to Mitigate Dendrite Growth. ChemSusChem 2020, 13, 2661–2670. https://doi.org/10.1002/cssc.201903499. 76. Wang, H.; Wang, C.; Matios, E.; Li, W. Facile Stabilization of the Sodium Metal Anode with Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate. Angew. Chem. Int. Ed. Engl. 2018, 57, 7734–7737. https://doi.org/10.1002/anie.201801818. 77. Yi, Q.; Lu, Y.; Sun, X.R.; Zhang, H.; Yu, H.L.; Sun, C.W. Fluorinated Ether Based Electrolyte Enabling Sodium‐Metal Batteries with Exceptional Cycling Stability. ACS Appl. Mater. Interfaces 2019, 11, 46965–46972. 78. Zheng, X.Y.; Gu, Z.Y.; Liu, X.Y.; Wang, Z.Q.; Wen, J.Y.; Wu, X.L.; Luo, W.; Huang, Y.H. Bridging the immiscibility of an all‐ fluoride fire extinguishant with highly‐fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 2020, 13, 1788–1798. 79. Liu, X.Y.; Zheng, X.Y.; Dai, Y.M.; Wu, W.Y.; Huang, Y.Y.; Fu, H.Y.; Huang, Y.H.; Luo, W. Fluoride‐Rich Solid‐Electrolyte‐ Interface Enabling Stable Sodium Metal Batteries in High‐Safe Electrolytes. Adv. Funct. Mater. 2021, 31, 2103522. 80. Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C.P.; Nakai, H.; Yamada, A. Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component? Angew. Chem. Int. Ed. 2019, 58, 8024–8028. https://doi.org/10.1002/anie.201901573. 81. Schafzahl, L.; Hanzu, I.; Wilkening, M.; Freunberger, S.A. An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. Chemsuschem 2017, 10, 401–408. https://doi.org/10.1002/cssc.201601222. 82. Wang, S.Y.; Chen, Y.W.; Jie, Y.L.; Lang, S.Y.; Song, J.H.; Lei, Z.W.; Wang, S.; Ren, X.D.; Wang, D.; Li, X.L.; et al. Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure. Small Methods 2020, 4, 1900856. https://doi.org/10.1002/smtd.201900856. 83. Le, P.M.L.; Vo, T.D.; Pan, H.L.; Jin, Y.; He, Y.; Cao, X.; Nguyen, H.V.; Engelhard, M.H.; Wang, C.M.; Xiao, J.; et al. Excellent Cycling Stability of Sodium Anode Enabled by a Stable Solid Electrolyte Interphase Formed in Ether‐Based Electrolytes. Adv. Funct. Mater. 2020, 30, 2001151. 84. Han, M.; Zhu, C.; Ma, T.; Pan, Z.; Tao, Z.; Chen, J. In situ atomic force microscopy study of nano–micro sodium deposition in ester‐based electrolytes. Chem. Commun. 2018, 54, 2381–2384. 85. Wang, S.; Cai, W.; Sun, Z.; Huang, F.; Jie, Y.; Liu, Y.; Chen, Y.; Peng, B.; Cao, R.; Zhang, G. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem. Commun. 2019, 55, 14375–14378. 86. Li, P.; Jiang, Z.; Huang, X.; Lu, X.; Xie, J.; Cheng, S. Nitrofullerene as an electrolyte‐compatible additive for high‐performance sodium metal batteries. Nano Energy 2021, 89, 106396. 87. Li, P.; Huang, X.; Jiang, Z.; Zhang, H.; Yu, P.; Lu, X.; Xie, J. High‐rate sodium metal batteries enabled by trifluormethylfullerene additive. Nano Res. 2022, 15, 7172–7179. https://doi.org/10.1007/s12274‐12022‐14349‐12278. 88. Luo, J.; Zhang, Y.; Matios, E.; Wang, P.; Wang, C.; Xu, Y.; Hu, X.; Wang, H.; Li, B.; Li, W. Stabilizing Sodium Metal Anodes with Surfactant‐Based Electrolytes and Unraveling the Atomic Structure of Interfaces by Cryo‐TEM. Nano Lett. 2022, 22, 1382–1390. 89. Zhu, M.; Li, L.; Zhang, Y.; Wu, K.; Yu, F.; Huang, Z.; Wang, G.; Li, J.; Wen, L.; Liu, H.‐K. An in‐situ formed stable interface layer for high‐performance sodium metal anode in a non‐flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153. 90. Lee, J.; Lee, Y.; Lee, J.; Lee, S.‐M.; Choi, J.‐H.; Kim, H.; Kwon, M.‐S.; Kang, K.; Lee, K.T.; Choi, N.‐S. Ultraconcentrated sodium bis (fluorosulfonyl) imide‐based electrolytes for high‐performance sodium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 3723–3732.PDF Image | Electrolyte Engineering for Sodium Metal Batteries
PDF Search Title:
Electrolyte Engineering for Sodium Metal BatteriesOriginal File Name Searched:
batteries-08-00157.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Salgenx
Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing.CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)