Thixotropic Ionogel Electrolyte for Sodium Batteries

PDF Publication Title:

Thixotropic Ionogel Electrolyte for Sodium Batteries ( thixotropic-ionogel-electrolyte-sodium-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Gels 2022, 8, 193 11 of 13 References Acknowledgments: This research was supported by the Guangdong–Hong Kong–Macao Joint Laboratory for Neutron Scattering Science and Technology. Conflicts of Interest: The authors declare no conflict of interest. 1. Paul, P.P.; McShane, E.J.; Colclasure, A.M.; Balsara, N.; Brown, D.E.; Cao, C.T.; Chen, B.R.; Chinnam, P.R.; Cui, Y.; Dufek, E.J.; et al. A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Li-Ion and Li-Metal Batteries. Adv. Energy Mater. 2021, 11, 2100372. [CrossRef] 2. Li, M.; Lu, J.; Chen, Z.W.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [CrossRef] [PubMed] 3. Wang, F.; Wang, B.; Li, J.X.; Wang, B.; Zhou, Y.; Wang, D.L.; Kliu, H.K.; Dou, S.X. Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. ACS Nano 2021, 15, 2197–2218. [CrossRef] [PubMed] 4. Chen, Y.Q.; Kang, Y.Q.; Zhao, Y.; Wang, L.; Liu, J.L.; Li, Y.X.; Liang, Z.; He, X.M.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [CrossRef] 5. Yang, Y.; Okonkwo, E.G.; Huang, G.Y.; Xu, S.M.; Sun, W.; He, Y.H. On the Sustainability of Lithium Ion Battery Industry-A Review and Perspective. Energy Storage Mater. 2021, 36, 186–212. [CrossRef] 6. Wang, Y.Q.; An, N.; Wen, L.; Wang, L.; Jiang, X.T.; Hou, F.; Yin, Y.X.; Liang, J. Recent Progress on the Recycling Technology of Li-Ion Batteries. J. Energy Chem. 2021, 55, 391–419. [CrossRef] 7. Jiang, S.; Zhang, L.; Hua, H.; Liu, X.; Wu, H.; Yuan, Z. Assessment of End-of-Life Electric Vehicle Batteries in China: Future Scenarios and Economic Benefits. Waste Manag. 2021, 135, 70–78. [CrossRef] [PubMed] 8. Sanclemente Crespo, M.; Van Ginkel González, M.; Talens Peiró, L. Prospects on End of Life Electric Vehicle Batteries Through 2050 in Catalonia. Resour. Conserv. Recycl. 2022, 180, 106133. [CrossRef] 9. Shafique, M.; Rafiq, M.; Azam, A.; Luo, X. Material Flow Analysis for End-of-Life Lithium-Ion Batteries from Battery Electric Vehicles in the USA and China. Resour. Conserv. Recycl. 2022, 178, 106061. [CrossRef] 10. Choi, Y.; Rhee, S.-W. Current Status and Perspectives on Recycling of End-of-Life Battery of Electric Vehicle in Korea (Republic of). Waste Manag. 2020, 106, 261–270. [CrossRef] 11. Tian, Y.S.; Zeng, G.B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.Y.; Koettgen, J.; Sun, Y.Z.; Ouyang, B.; Chen, T.N.; et al. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [CrossRef] [PubMed] 12. Nayak, P.K.; Yang, L.T.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [CrossRef] [PubMed] 13. Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A.Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M. Challenges of Today for Na-Based Batteries of the Future: From Materials to Cell Metrics. J. Power Sources 2021, 482, 27. [CrossRef] 14. Wang, E.H.; Niu, Y.B.; Yin, Y.X.; Guo, Y.G. Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. ACS Mater. Lett. 2021, 3, 18–41. [CrossRef] 15. Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M.I. Prospects in Anode Materials for Sodium Ion Batteries—A Review. Renew. Sust. Energy Rev. 2020, 119, 109549. [CrossRef] 16. Huang, Y.X.; Zhao, L.Z.; Li, L.; Xie, M.; Wu, F.; Chen, R.J. Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application. Adv. Mater. 2019, 31, 41. [CrossRef] [PubMed] 17. Miroshnikov, M.; Kato, K.; Babu, G.; Kumar, N.; Mahankali, K.; Hohenstein, E.; Wang, H.; Satapathy, S.; Divya, K.P.; Asare, H.; et al. Nature-Derived Sodium-Ion Battery: Mechanistic Insights into Na-Ion Coordination within Sustainable Molecular Cathode Materials. ACS Appl. Energy Mater. 2019, 2, 8596–8604. [CrossRef] 18. Syali, M.S.; Kumar, D.; Mishra, K.; Kanchan, D.K. Recent Advances in Electrolytes for Room-Temperature Sodium-Sulfur Batteries: A Review. Energy Storage Mater. 2020, 31, 352–372. [CrossRef] 19. Li, K.K.; Zhang, J.; Lin, D.M.; Wang, D.W.; Li, B.H.; Lv, W.; Sun, S.; He, Y.B.; Kang, F.Y.; Yang, Q.H.; et al. Evolution of The Electrochemical Interface in Sodium Ion Batteries with Ether Electrolytes. Nat. Commun. 2019, 10, 725. [CrossRef] [PubMed] 20. Yang, C.; Xin, S.; Mai, L.Q.; You, Y. Materials Design for High-Safety Sodium-Ion Battery. Adv. Energy Mater. 2021, 11, 17. [CrossRef] 21. Ren, W.H.; Ding, C.F.; Fu, X.W.; Huang, Y. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives. Energy Storage Mater. 2021, 34, 515–535. [CrossRef] 22. Fan, L.Q.; Tu, Q.M.; Geng, C.L.; Wang, Y.L.; Sun, S.J.; Huang, Y.F.; Wu, J.H. Improved Redox-Active Ionic Liquid-Based Ionogel Electrolyte by Introducing Carbon Nanotubes for Application in All-Solid-State Supercapacitors. Int. J. Hygrogen Energy 2020, 45, 17131–17139. [CrossRef] 23. Zhou, B.H.; He, D.; Hu, J.; Ye, Y.S.; Peng, H.Y.; Zhou, X.P.; Xie, X.L.; Xue, Z.G. A Flexible, Self-Healing and Highly Stretchable Polymer Electrolyte via Quadruple Hydrogen Bonding for Lithium-Ion Batteries. J. Mater. Chem. A 2018, 6, 11725–11733. [CrossRef] 24. Shikinaka, K.; Taki, N.; Kaneda, K.; Tominaga, Y. Quasi-Solid Electrolyte: A Thixotropic Gel of Imogolite and an Ionic Liquid. Chem. Commun. 2017, 53, 613–616. [CrossRef] [PubMed]

PDF Image | Thixotropic Ionogel Electrolyte for Sodium Batteries

PDF Search Title:

Thixotropic Ionogel Electrolyte for Sodium Batteries

Original File Name Searched:

gels-08-00193-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Salgenx

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)