Seawater Desalination using Rechargeable Seawater Battery

PDF Publication Title:

Seawater Desalination using Rechargeable Seawater Battery ( seawater-desalination-using-rechargeable-seawater-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

www.advancedsciencenews.com www.advancedscience.com [8] S. Park, M. Ligaray, Y. Kim, K. Chon, M. Son, K. H. Cho, Desalination 2021, 506, 115018. [9] S. Park, B. SenthilKumar, K. Kim, S. M. Hwang, Y. Kim, J. Mater. Chem. A 2016, 4, 7207. [10] J.-K. Kim, E. Lee, H. Kim, C. Johnson, J. Cho, Y. Kim, ChemElectroChem 2015, 2, 328. [11] S. M. Hwang, J.-S. Park, Y. Kim, W. Go, J. Han, Y. Kim, Y. Kim, Adv. Mater. 2019, 31, 1804936. [12] S. T. Senthilkumar, W. Go, J. Han, L. P. T. Thuy, K. Kishor, Y. Kim, Y. Kim, J. Mater. Chem. A 2019, 7, 22803. [13] Y. Kim, G.-T. Kim, S. Jeong, X. Dou, C. Geng, Y. Kim, S. Passerini, Energy Storage Mater. 2019, 16, 56. [14] J.-K. Kim, F. Mueller, H. Kim, D. Bresser, J.-S. Park, D.-H. Lim, G.-T. Kim, S. Passerini, Y. Kim, NPG Asia Mater. 2014, 6, e144. [15] J. Deng, W.-B. Luo, S.-L. Chou, H.-K. Liu, S.-X. Dou, Adv. Energy Mater. 2018, 8, 1701428. [16] M. Pasta, C. D. Wessells, Y. Cui, F. L. Mantia, Nano Lett. 2012, 12, 839. [17] D. Desai, E. S. Beh, S. Sahu, V. Vedharathinam, Q. van Overmeere, C. F. de Lannoy, A. P. Jose, A. R. Völkel, J. B. Rivest, ACS Energy Lett. 2018, 3, 375. [18] D.-H. Nam, M. A. Lumley, K.-S. Choi, ACS Energy Lett. 2021, 6, 1034. [19] Y. Kim, S. M. Hwang, H. Yu, Y. Kim, J. Mater. Chem. A 2018, 6, 3046. [20] D.-H. Nam, M. A. Lumley, K.-S. Choi, Energy Storage Mater. 2021, 37, 556. [21] Y. Kim, A. M. Harzandi, J. Lee, Y. Choi, Y. Kim, Adv. Sustainable Syst. 2021, 5, 2000106. [22] C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013. [23] G. L. M. von Medeazza, Desalination 2005, 185, 57. [24] M. Elimelech, W. A. Phillip, Science 2011, 333, 712. [25] K. Park, J. Kim, D. R. Yang, S. Hong, J. Membr. Sci. 2020, 595, 117607. [26] L. Wang, C. Violet, R. M. DuChanois, M. Elimelech, J. Chem. Educ. 2020, 97, 4361. [27] K. Tang, Y.-h. Kim, J. Chang, R. T. Mayes, J. Gabitto, S. Yiacoumi, C. Tsouris, Chem. Eng. J. 2019, 357, 103. [28] K. Tang, K. Zhou, Environ. Sci. Technol. 2020, 54, 5853. [29] S. Hand, J. S. Guest, R. D. Cusick, Environ. Sci. Technol. 2019, 53, [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] X. Liu, S. Shanbhag, T. V. Bartholomew, J. F. Whitacre, M. S. Mauter, ACS ES&T Engg 2021, 1, 261. J. Choi, P. Dorji, H. K. Shon, S. Hong, Desalination 2019, 449, 118. M. Turek, Desalination 2003, 153, 371. S. K. Thampy, P. K. Narayanan, W. P. Harkare, K. P. Govindan, Desali- nation 1988, 69, 261. T. Seto, L. Ehara, R. Komori, A. Yamaguchi, T. Miwa, Desalination 1978, 25, 1. S. Shi, P.-Q. Chen, Desalination 1983, 46, 191. N. Voutchkov, Desalination 2018, 431, 2. N. Ghaffour, T. M. Missimer, G. L. Amy, Desalination 2013, 309, 197. S. Lee, T.-s. Park, Y.-G. Park, W.-i. Lee, S.-H. Kim, Desalination 2020, 491, 114429. K. Kim, S. M. Hwang, J.-S. Park, J. Han, J. Kim, Y. Kim, J. Power Sources 2016, 313, 46. S. T. Senthilkumar, H. Bae, J. Han, Y. Kim, Angew. Chem. 2018, 57, 5335. S. T. Senthilkumar, J. Han, J. Park, S. M. Hwang, D. Jeon, Y. Kim, Energy Storage Mater. 2018, 12, 324. G. Patry, A. Romagny, S. Martinet, D. Froelich, Energy Sci. Eng. 2015, 3, 71. S. F. Schneider, C. Bauer, P. Novák, E. J. Berg, Sustainable Energy Fuels 2019, 3, 3061. M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561. S. K. Patel, P. M. Biesheuvel, M. Elimelech, ACS ES&T Engg. 2021, 1, 851. U. Von Alpen, M. F. Bell, H. H. Höfer, Solid State Ionics 1981, 3–4, 215. Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz, J. T. S. Irvine, J. Mater. Chem. A 2019, 7, 7766. S. T. Senthilkumar, M. Abirami, J. Kim, W. Go, S. M. Hwang, Y. Kim, J. Power Sources 2017, 341, 404. M. Paul, H. B. Park, B. D. Freeman, A. Roy, J. E. McGrath, J. S. Riffle, Polymer 2008, 49, 2243. A. Widjaya, T. Hoang, G. W. Stevens, S. E. Kentish, Sep. Purif. Technol. 2012, 89, 270. J. A. Redondo, A. Casañas, Desalination 2001, 134, 83. A. AlTaee, A. O. Sharif, Desalination 2011, 273, 391. L. Wang, J. E. Dykstra, S. Lin, Environ. Sci. Technol. 2019, 53, 3366. K. G. Nayar, J. Fernandes, R. K. McGovern, K. P. Dominguez, A. Mc- Cance, B. S. Al-Anzi, J. H. Lienhard, Desalination 2019, 456, 97. 13353. Adv. Sci. 2021, 2101289 2101289 (8 of 9) © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH Moon Son is a Research Assistant Professor at the School of Urban and Environmental Engineering at Ulsan National Institute of Science and Technology (UNIST), South Korea. He received his Ph.D. (2017, advisor: Prof. Heechul Choi) in environmental engineering from Gwangju Institute of Science and Technology (GIST), South Korea. After that, he joined Prof. Bruce E. Logan’s group at the Pennsyl- vania State University as a post-doctoral fellow. His current research is focused on renewable energy production, low-energy water treatment, and water desalination by electrochemical- or membrane- based processes.

PDF Image | Seawater Desalination using Rechargeable Seawater Battery

PDF Search Title:

Seawater Desalination using Rechargeable Seawater Battery

Original File Name Searched:

advs2827.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Salgenx

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)