PDF Publication Title:
Text from PDF Page: 014
Metals 2021, 11, 1301 14 of 17 References 1. Peng, H. A literature review on leaching and recovery of vanadium. J. Environ. Chem. Eng. 2019, 7, 103313. [CrossRef] 2. Bauer, G.; Güther, V.; Hess, H.; Otto, A.; Roidl, O.; Roller, H.; Sattelberger, S. Vanadium and Vanadium Compounds; Excerpt from Ullmann’s; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002. 3. Del Carpio, E.; Hernández, L.; Ciangherotti, C.; Coa, V.V.; Jiménez, L.; Lubes, V.; Lubes, G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord. Chem. Rev. 2018, 372, 117–140. [CrossRef] [PubMed] 4. Zhao, Q.S.; Li, Z.J. Vanadium Metallurgy(fine)/Nonferrous Metals Theory and Technology Frontier Series; Central South University Press: Changsha, China, 2015. 5. Hildenbrand, D.L.; Lau, K.H.; Perez-Mariano, J.; Sanjurjo, A. Thermochemistry of the Gaseous Vanadium Chlorides VCl, VCl2, VCl3, and VCl4. J. Phys. Chem. A 2008, 112, 9978–9982. [CrossRef] [PubMed] 6. Aregay, G.G.; Ali, J.; Shahzad, A.; Lfthikar, J.; Oyekunle, D.T.; Chen, Z.Q. Application of layered double hydroxide enriched with electron rich sulfide moieties (S2O42−) for efficient and selective removal of vanadium (V) from diverse aqueous medium. Sci. Total Environ. 2021, 792, 148543. [CrossRef] 7. Zhang, R.C.; Leiviskä, T. Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal. Chem. Eng. J. 2020, 385, 123987. [CrossRef] 8. Petranikova, M.; Tkaczyk, A.; Bartl, A.; Amato, A.; Lapkovskis, V.; Tunsu, C. Vanadium sustainability in the context of innovative recycling and sourcing development. Waste Manag. 2020, 113, 521–544. [CrossRef] 9. Gilligan, R.; Nikoloski, A.N. The extraction of vanadium from titanomagnetites and other sources. Miner. Eng. 2020, 146, 106106. [CrossRef] 10. Kologrieva, U.; Volkov, A.; Zinoveev, D.; Krasnyanskaya, I.; Stulov, P.; Wainstein, D. Investigation of vanadium-containing sludge oxidation roasting process for vanadium extraction. Metals 2021, 11, 100. [CrossRef] 11. Brocchi, E.; Navarro, R.; Moura, F. A chemical thermodynamics review applied to V2O5 chlorination. Thermochim. Acta 2013, 559, 1–16. [CrossRef] 12. Zhou, X.J.; Cui, X.M.; Peng, F.C. Thermodynamics of Ti, V and Their Chemical Compounds; Metallurgical Industry Press: Beijing, China, 2019. (In Chinese) 13. Wang, H.-J.; Feng, Y.-L.; Li, H.-R.; Kang, J.-X. Simultaneous extraction of gold and zinc from refractory carbonaceous gold ore by chlorination roasting process. Trans. Nonferr. Met. Soc. China 2020, 30, 1111–1123. [CrossRef] 14. Fan, C.; Xu, J.; Yang, H.; Zhu, Q. High-purity, low-Cl V2O5 via the gaseous hydrolysis of VOCl3 in a fluidized bed. Particuology 2020, 49, 9–15. [CrossRef] 15. Kim, J.Y.; Lee, M.S.; Jung, E.J. A study of formation behavior of porous structure induced by selective chlorination of ilmenite. Mater. Chem. Phys. 2020, 241, 122433. [CrossRef] 16. Xing, Z.; Cheng, G.; Yang, H.; Xue, X.; Jiang, P. Mechanism and application of the ore with chlorination treatment: A review. Miner. Eng. 2020, 154, 106404. [CrossRef] 17. Jena, S.K.; Dash, N.; Angadi, S.I. A novel application of Linz-Donawitz Slag for potash recovery from waste mica scrap using chlorination roasting coupled water leaching process. Sep. Sci. Technol. 2021, 56, 2310–2326. [CrossRef] 18. Mochizuki, Y.; Tsubouchi, N.; Sugawara, K. Separation of valuable elements from steel making slag by chlorination. Resour. Conserv. Recycl. 2020, 158, 104815. [CrossRef] 19. Long, H.L.; Li, H.Y.; Pei, J.N.; Srinivasakannan, C.; Yin, S.H.; Zhang, L.B.; Ma, A.Y.; Li, S.W. Cleaner recovery of multiple valuable metals from cyanide tailings via chlorination roasting. Sep. Sci. Technol. 2021, 56, 2113–2123. [CrossRef] 20. Guo, X.; Zhang, B.; Wang, Q.; Li, Z.; Tian, Q. Recovery of Zinc and Lead from Copper Smelting Slags by Chlorination Roasting. JOM 2021, 73, 1861–1870. [CrossRef] 21. Kim, J.; Lee, Y.R.; Jung, E.J. A Study on the Roasting Process for Efficient Selective Chlorination of Ilmenite Ores. JOM 2021, 73, 1495–1502. [CrossRef] 22. Kang, J.; Okabe, T.H. Thermodynamic Consideration of the Removal of Iron from Titanium Ore by Selective Chlorination. Met. Mater. Trans. A 2014, 45, 1260–1271. [CrossRef] 23. Jena, P.K.; Brocchi, E.A. Metal extraction through chlorine metallurgy. Miner. Process. Extr. Metall. Rev. 1997, 16, 211–237. [CrossRef] 24. Li, H.Y.; Li, S.W.; Ma, P.C.; Zhou, Z.F.; Long, H.L.; Peng, J.H.; Zhang, L.B. Evaluation of a cleaner production for cyanide tailings by chlorination thermal treatments. J. Clean. Prod. 2021, 281, 124195. [CrossRef] 25. Chen, S.; Guan, J.; Yuan, H.; Wu, H.C.; Gu, W.X.; Gao, G.L.; Guo, Y.G.; Dia, J.; Su, R.J. Behavior and Mechanism of Indium Extraction from Waste Liquid-Crystal Display Panels by Microwave-Assisted Chlorination Metallurgy. JOM 2021, 73, 1290–1300. [CrossRef] 26. Cui, F.; Mu, W.; Zhai, Y.; Guo, X. The selective chlorination of nickel and copper from low-grade nickel-copper sulfide-oxide ore: Mechanism and kinetics. Sep. Purif. Technol. 2020, 239, 116577. [CrossRef] 27. Kumari, A.; Raj, R.; Randhawa, N.; Sahu, S.K. Energy efficient process for recovery of rare earths from spent NdFeB magnet by chlorination roasting and water leaching. Hydrometallurgy 2021, 201, 105581. [CrossRef] 28. Okabe, P.; Newton, M.; Rappleye, D.; Simpson, M.F. Gas-solid reaction pathway for chlorination of rare earth and actinide metals using hydrogen and chlorine gas. J. Nucl. Mater. 2020, 534, 152156. [CrossRef]PDF Image | Extraction of the Rare Element Vanadium
PDF Search Title:
Extraction of the Rare Element VanadiumOriginal File Name Searched:
metals-11-01301.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Salgenx
Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing. CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |