Electrolyte Engineering for Sodium Metal Batteries

PDF Publication Title:

Electrolyte Engineering for Sodium Metal Batteries ( electrolyte-engineering-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 026

Batteries 2022, 8, 157 26 of 26 118. Zhao, Y.J.; Wang, C.Z.; Dai, Y.J.; Jin, H.B. Homogeneous Nat transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid‐state sodium metal batteries. Nano Energy 2021, 88, 106293. 119. Yang, J.Y.; Xu, H.H.; Wu, J.Y.; Gao, Z.H.; Hu, F.; Wei, Y.; Li, Y.Y.; Liu, D.Z.; Li, Z.; Huang, Y.H. Improving Na/Na3Zr2Si2PO12 Interface via SnOx/Sn Film for High‐Performance Solid‐State Sodium Metal Batteries. Small Methods 2021, 5, 2100339. 120. Wang, X.X.; Chen, J.J.; Mao, Z.Y.; Wang, D.J. In situ construction of a stable interface induced by the SnS2 ultra‐thin layer for dendrite restriction in a solid‐state sodium metal battery. J. Mater. Chem. A 2021, 9, 16039–16045. https://doi.org/10.1039/d1ta04869d. 121. Wang, C.Z.; Jin, H.B.; Zhao, Y.J. Surface Potential Regulation Realizing Stable Sodium/Na3Zr2Si2PO12 Interface for Room‐ Temperature Sodium Metal Batteries. Small 2021, 17, 2100974. https://doi.org/10.1002/smll.202100974. 122. Ruiz‐Martinez, D.; Kovacs, A.; Gomez, R. Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ. Sci. 2017, 10, 1936–1941. 123. Lin, X.T.; Sun, F.; Sun, Q.; Wang, S.Z.; Luo, J.; Zhao, C.T.; Yang, X.F.; Zhao, Y.; Wang, C.H.; Li, R.Y.; et al. O2/O2− Crossover‐ and Dendrite‐Free Hybrid Solid‐State Na‐O2 Batteries. Chem. Mater. 2019, 31, 9024–9031. 124. Wu,S.;Qiao,Y.;Jiang,K.;He,Y.;Guo,S.;Zhou,H.TailoringSodiumAnodesforStableSodium–OxygenBatteries.Adv.Funct. Mater. 2018, 28, 1706374. https://doi.org/10.1002/adfm.201706374. 125. Sun,Q.;Dai,L.;Tang,Y.F.;Sun,J.;Meng,W.D.;Luo,T.T.;Wang,L.;Liu,S.DesigningaNovelElectrolyteNa3.2Hf2Si2.2P0.8O11.85F0.3 for All‐Solid‐State Na‐O2 Batteries. Small Methods 2022, 6, 202200345. https://doi.org/10.1002/smtd.202200345. 126. Liang,F.;Qiu,X.;Zhang,Q.;Kang,Y.;Koo,A.;Hayashi,K.;Chen,K.;Xue,D.;Hui,K.N.;Yadegari,H.;etal.Aliquidanodefor rechargeable sodium‐air batteries with low voltage gap and high safety. Nano Energy 2018, 49, 574–579. https://doi.org/10.1016/j.nanoen.2018.04.074. 127. Wang, C.; Deng, T.; Fan, X.; Zheng, M.; Yu, R.; Lu, Q.; Duan, H.; Huang, H.; Wang, C.; Sun, X. Identifying soft breakdown in all‐solid‐state lithium battery. Joule 2022, 6, 1770–1781. https://doi.org/10.1016/j.joule.2022.05.020. 128. Song,S.;Kotobuki,M.;Zheng,F.;Xu,C.;Savilov,S.V.;Hu,N.;Lu,L.;Wang,Y.;Li,W.D.Z.Ahybridpolymer/oxide/ionic‐liquid solid electrolyte for Na‐metal batteries. J. Mater. Chem. A 2017, 5, 6424–6431. 129. Yang, J.; Gao, Z.; Ferber, T.; Zhang, H.; Guhl, C.; Yang, L.; Li, Y.; Deng, Z.; Liu, P.; Cheng, C. Guided‐formation of a favorable interface for stabilizing Na metal solid‐state batteries. J. Mater. Chem. A 2020, 8, 7828–7835. 130. Lu, Y.; Alonso, J.A.; Yi, Q.; Lu, L.; Wang, Z.L.; Sun, C. A high‐performance monolithic solid‐state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv. Energy Mater. 2019, 9, 1901205. 131. Miao,X.;Di,H.;Ge,X.;Zhao,D.;Wang,P.;Wang,R.;Wang,C.;Yin,L.AlF3‐modifiedanode‐electrolyteinterfaceforeffective Na dendrites restriction in NASICON‐based solid‐state electrolyte. Energy Storage Mater. 2020, 30, 170–178. 132. Chen,S.;Niu,C.;Lee,H.;Li,Q.;Yu,L.;Xu,W.;Zhang,J.‐G.;Dufek,E.J.;Whittingham,M.S.;Meng,S.;etal.CriticalParameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li‐Metal Batteries. Joule 2019, 3, 1094–1105. https://doi.org/10.1016/j.joule.2019.02.004. 133. Chen,H.;Yang,Y.;Boyle,D.T.;Jeong,Y.K.;Xu,R.;deVasconcelos,L.S.;Huang,Z.;Wang,H.;Wang,H.;Huang,W.;etal.Free‐ standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798. https://doi.org/10.1038/s41560‐021‐00833‐6. 134. Niu, C.; Liu, D.; Lochala, J.A.; Anderson, C.S.; Cao, X.; Gross, M.E.; Xu, W.; Zhang, J.‐G.; Whittingham, M.S.; Xiao, J.; et al. Balancing interfacial reactions to achieve long cycle life in high‐energy lithium metal batteries. Nat. Energy 2021, 6, 723–732. https://doi.org/10.1038/s41560‐021‐00852‐3.

PDF Image | Electrolyte Engineering for Sodium Metal Batteries

PDF Search Title:

Electrolyte Engineering for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Salgenx

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)