logo

Electrolyte Engineering for Sodium Metal Batteries

PDF Publication Title:

Electrolyte Engineering for Sodium Metal Batteries ( electrolyte-engineering-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 025

Batteries 2022, 8, 157 25 of 26 91. Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M.H.; Zhang, J.‐G. Extremely stable sodium metal batteries enabled by localized high‐concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321. 92. Niu, Y.‐B.; Yin, Y.‐X.; Wang, W.‐P.; Wang, P.‐F.; Ling, W.; Xiao, Y.; Guo, Y.‐G. In situ copolymerizated gel polymer electrolyte with cross‐linked network for sodium‐ion batteries. CCS Chem. 2020, 2, 589–597. 93. Wang, Q.; Wang, H.; Wu, J.; Zhou, M.; Liu, W.; Zhou, H. Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy 2021, 80, 105516. 94. Lin, X.; Yu, J.; Effat, M.B.; Zhou, G.; Robson, M.J.; Kwok, S.C.; Li, H.; Zhan, S.; Shang, Y.; Ciucci, F. Ultrathin and non‐flammable dual‐salt polymer electrolyte for high‐energy‐density lithium‐metal battery. Adv. Funct. Mater. 2021, 31, 2010261. 95. Ford, H.O.; Cui, C.; Schaefer, J.L. Comparison of single‐ion conducting polymer gel electrolytes for sodium, potassium, and calcium batteries: Influence of polymer chemistry, cation identity, charge density, and solvent on conductivity. Batteries 2020, 6, 11. 96. Zheng, Y.W.; Pan, Q.W.; Clites, M.; Byles, B.W.; Pomerantseva, E.; Li, C.Y. High‐Capacity All‐Solid‐State Sodium Metal Battery with Hybrid Polymer Electrolytes. Adv. Energy Mater. 2018, 8, 1801885. https://doi.org/10.1002/aenm.201801885. 97. Wang, P.; Zhang, H.R.; Chai, J.C.; Liu, T.M.; Hu, R.X.; Zhang, Z.H.; Li, G.C.; Cui, G.L. A novel single‐ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated‐temperature sodium metal batteries. Solid State Ion. 2019, 337, 140–146. https://doi.org/10.1016/j.ssi.2019.04.022. 98. Sangeland, C.; Mogensen, R.; Brandell, D.; Mindemark, J. Stable Cycling of Sodium Metal All‐Solid‐State Batteries with Polycarbonate‐Based Polymer Electrolytes. ACS Appl. Polym. Mater. 2019, 1, 825–832. https://doi.org/10.1021/acsapm.9b00068. 99. Wen, P.; Lu, P.; Shi, X.; Yao, Y.; Shi, H.; Liu, H.; Yu, Y.; Wu, Z.S. Photopolymerized gel electrolyte with unprecedented room‐ temperature ionic conductivity for high‐energy‐density solid‐state sodium metal batteries. Adv. Energy Mater. 2021, 11, 2002930. 100. Zhang, Z.; Huang, Y.; Li, C.; Li, X. Metal–organic framework‐supported poly (ethylene oxide) composite gel polymer electrolytes for high‐performance lithium/sodium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 37262–37272. 101. Yang, J.F.; Zhang, M.; Chen, Z.; Du, X.F.; Huang, S.Q.; Tang, B.; Dong, T.T.; Wu, H.; Yu, Z.; Zhang, J.J.; et al. Flame‐retardant quasi‐solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 2019, 12, 2230–2237. https://doi.org/10.1007/s12274‐019‐2369‐9. 102. Luo,C.;Shen,T.;Ji,H.;Huang,D.;Liu,J.;Ke,B.;Wu,Y.;Chen,Y.;Yan,C.Mechanicallyrobustgelpolymerelectrolyteforan ultrastable sodium metal battery. Small 2020, 16, 1906208. 103. Wang, J.; Ni, Y.; Liu, J.; Lu, Y.; Zhang, K.; Niu, Z.; Chen, J. Room‐Temperature Flexible Quasi‐Solid‐State Rechargeable Na‐O2 Batteries. ACS Cent. Sci. 2020, 6, 1955–1963. https://doi.org/10.1021/acscentsci.0c00849. 104. Yu, X.; Grundish, N.S.; Goodenough, J.B.; Manthiram, A. Ionic Liquid (IL) Laden Metal‐Organic Framework (IL‐MOF) Electrolyte for Quasi‐Solid‐State Sodium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669. 105. Yang,L.;Jiang,Y.;Liang,X.;Lei,Y.;Yuan,T.;Lu,H.;Liu,Z.;Cao,Y.;Feng,J.NovelSodium–poly(tartaricacid)borate‐based single‐ion conducting polymer electrolyte for sodium–metal batteries. ACS Appl. Energy Mater. 2020, 3, 10053–10060. 106. Mendes,T.C.;Zhang,X.;Wu,Y.;Howlett,P.C.;Forsyth,M.;Macfarlane,D.R.Supportedionicliquidgelmembraneelectrolytes for a safe and flexible sodium metal battery. ACS Sustain. Chem. Eng. 2019, 7, 3722–3726. 107. Zhang,C.;Hu,Q.;Shen,Y.;Liu,W.Fast‐ChargingSolid‐StateLithiumMetalBatteries:AReview.Adv.EnergySustain.Res.2022, 3, 2100203. 108. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. All‐solid‐state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14, 2577–2619. https://doi.org/10.1039/d1ee00551k. 109. Wang, C.; Liang, J.; Hwang, S.; Li, X.; Zhao, Y.; Adair, K.; Zhao, C.; Li, X.; Deng, S.; Lin, X.; et al. Unveiling the critical role of interfacial ionic conductivity in all‐solid‐state lithium batteries. Nano Energy 2020, 72, 104686. https://doi.org/10.1016/j.nanoen.2020.104686. 110. Wenzel, S.; Leichtweiss, T.; Weber, D.A.; Sann, J.; Zeier, W.G.; Janek, J. Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium beta‐Alumina for Protected Sodium Metal Anodes and Sodium All‐Solid‐State Batteries. ACS Appl. Mater. Interfaces 2016, 8, 28216–28224. 111. Wu,T.;Wen,Z.Y.;Sun,C.Z.;Wu,X.W.;Zhang,S.P.;Yang,J.H.Disorderedcarbontubesbasedoncottonclothformodulating interface impedance in betaʺ‐Al2O3‐based solid‐ state sodium metal batteries. J. Mater. Chem. A 2018, 6, 12623–12629. 112. Deng,T.;Ji,X.;Zou,L.;Chiekezi,O.;Cao,L.;Fan,X.;Adebisi,T.R.;Chang,H.‐J.;Wang,H.;Li,B.;etal.Interfacial‐engineering‐ enabled practical low‐temperature sodium metal battery. Nat. Nanotechnol. 2022, 17, 269–277. 113. Chi,X.;Hao,F.;Zhang,J.;Wu,X.;Zhang,Y.;Gheytani,S.;Wen,Z.;Yao,Y.Ahigh‐energyquinone‐basedall‐solid‐statesodium metal battery. Nano Energy 2019, 62, 718–724. 114. Lei, D.; He, Y.‐B.; Huang, H.; Yuan, Y.; Zhong, G.; Zhao, Q.; Hao, X.; Zhang, D.; Lai, C.; Zhang, S. Cross‐linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra‐stable sodium metal battery. Nat. Commun. 2019, 10, 4244. 115. Matios,E.;Wang,H.;Wang,C.L.;Hu,X.F.;Lu,X.;Luo,J.M.;Li,W.Y.GrapheneRegulatedCeramicElectrolyteforSolid‐State Sodium Metal Battery with Superior Electrochemical Stability. ACS Appl. Mater. Interfaces 2019, 11, 5064–5072. 116. Ling, W.; Fu, N.; Yue, J.P.; Zeng, X.X.; Ma, Q.; Deng, Q.; Xiao, Y.; Wan, L.J.; Guo, Y.G.; Wu, X.W. A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Adv. Energy Mater. 2020, 10, 1903966. 117. Yu, W.H.; Zhai, Y.F.; Yang, G.M.; Yao, J.Y.; Song, S.F.; Li, S.; Tang, W.P.; Hu, N.; Lu, L. A composite electrolyte with Na3Zr2Si2PO12 microtube for solid‐state sodium‐metal batteries. Ceram. Int. 2021, 47, 11156–11168.

PDF Image | Electrolyte Engineering for Sodium Metal Batteries

electrolyte-engineering-sodium-metal-batteries-025

PDF Search Title:

Electrolyte Engineering for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Salgenx

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our flow battery manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP