
PDF Publication Title:
Text from PDF Page: 005
564 C.-N. Sun et al. / Journal of Power Sources 248 (2014) 560e564 of balance at the rate of 0.005% h1 approximately. Note that this is a References substantial overestimation because the time spent fully char- geddthe SOC of maximum hydrogen evolutiondis a small fraction of the total duty cycle and the current from the HER will drop exponentially with voltage. Nonetheless, such a rate would require weekly rebalancing to the tune of w1%. We also point out that the higher total surface area results in substantial increases in perfor- mance. Higher operating current density translates directly to lower needed total surface area and a proportionally lower rate. 4. Conclusions The hydrogen evolution taking place in the negative electrode environment of the VRFB has been studied. Two types of carbon paper examined by buoyancy test have been found to yield distinct hydrogen formation rates. The nitrogen adsorption method, capacitance and XPS measurements have been carried out to further characterize the BETSA, the ECSA and the surface chemistry of each carbon material. With comparable surface chemistry for 10AA and CP-ESA, we attribute the 50-fold difference in hydrogen formation rate to the distinct available electrochemical surface area. As the performance of the VRFB is significantly improved by adopting high surface area and high porosity electrode materials, the rate of the side reactions in the RFB may scale up proportionally and be partly responsible for the capacity fade. Here, we address this issue by correlating the structureeproperty relationships of various carbon materials to- ward hydrogen gas evolution. Acknowledgments The authors gratefully acknowledge the support of the US Department of Energy Office of Electricity Storage Systems Program directed by Dr. Imre Gyuk and the University of Tennessee Governor’s Chair Fund for support of this work. Dr. Hui Zhou is gratefully acknowledged for his support during SEM collection. This work was partially supported by the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Di- vision (LB, GMV). Appendix A. Supplementary data Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.jpowsour.2013.09.125. [1] J. Liu, J.-G. Zhang, Z. Yang, J.P. Lemmon, C. Imhoff, G.L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V.V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, B. Schwenzer, Adv. Energy Mater. 23 (2013) 929e946. [2] Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111 (2011) 3577e3613. [3] A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, J. Appl. Electrochem. 41 (2011) 1137e1164. [4] Q. Huang, H. Li, M. Grätzel, Q. Wang, Phys. Chem. Chem. Phys. 15 (2013) 1793e1797. [5] C. Ponce de León, A. Frías-Ferrer, J. González-García, D.A. Szánto, F.C. Walsh, J. Power Sources 160 (2006) 716e732. [6] M. Skyllas-Kazacos, J. Electrochem. Soc. 133 (1986) 1057. [7] M. Kazacos, M. Cheng, M. Skyllas-Kazacos, J. Appl. Electrochem. 20 (1990) 463e467. [8] E. Sum, M. Skyllas-Kazacos, J. Power Sources 15 (1985) 179e190. [9] M. Rychcik, M. Skyllas-Kazacos, J. Power Sources 19 (1987) 45e54. [10] C. Fabjan, J. Garche, B. Harrer, L. Jörissen, C. Kolbeck, F. Philippi, G. Tomazic, F. Wagner, Electrochim. Acta 47 (2001) 825e831. [11] A. Di Blasi, O. Di Blasi, N. Briguglio, A.S. Aricò, D. Sebastián, M.J. Lázaro, G. Monforte, V. Antonucci, J. Power Sources 227 (2013) 15e23. [12] S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z.G. Yang, M.A. Hickner, Electrochem. Commun. 12 (2010) 1650e1653. [13] D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A.B. Papandrew, A. Turhan, T.A. Zawodzinski, M.M. Mench, J. Power Sources 206 (2012) 450e453. [14] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochim. Acta 89 (2013) 429e435. [15] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Nano Lett. 13 (2013) 1330e1335. [16] C. Fujimoto, S. Kim, R. Stains, X. Wei, L. Li, Z.G. Yang, Electrochem. Commun. 20 (2012) 48e51. [17] B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, ChemSusChem 4 (2011) 1388e1406. [18] D. Chen, S. Kim, V. Sprenkle, M.A. Hickner, J. Power Sources 231 (2013) 301e306. [19] Z.Mai,H.Zhang,H.Zhang,W.Xu,W.Wei,H.Na,X.Li,ChemSusChem6(2013) 328e335. [20] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Adv. Energy Mater. 1 (2011) 394e400. [21] J. Xi, Z. Wu, X. Qiu, L. Chen, J. Power Sources 166 (2007) 531e536. [22] Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei, B. Li, B. Chen, Z. Yang, V. Sprenkle, ChemSusChem 6 (2013) 268e274. [23] A.H. Whitehead, M. Harrer, J. Power Sources 230 (2013) 271e276. [24] A.A. Shah, H. Al-Fetlawi, F.C. Walsh, Electrochim. Acta 55 (2010) 1125e 1139. [25] C.H. Fujimoto, M.A. Hickner, C.J. Cornelius, D.A. Loy, Macromolecules 38 (2005) 5010e5016. [26] D. Xing, S. Zhang, C. Yin, B. Zhang, X. Jian, J. Memb. Sci. 354 (2010) 68e73. [27] D.Aaron,C.-N.Sun,M.Bright,A.B.Papandrew,M.M.Mench,T.A.Zawodzinski, ECS Electrochem. Lett. 2 (2013) A29eA31. [28] C.-N. Sun, F.M. Delnick, D.S. Aaron, A.B. Papandrew, M.M. Mench, T.A. Zawodzinski, ECS Electrochem. Lett. 2 (2013) A43eA45. [29] D.Briggs,PracticalSurfaceAnalysis,seconded.,JohnWiley&Sons,Chichester, 1990. [30] T. Takahagi, A. Ishitani, Carbon 26 (1988) 389e395.PDF Image | Hydrogen evolution at the negative electrode vanadium
PDF Search Title:
Hydrogen evolution at the negative electrode vanadiumOriginal File Name Searched:
hydrogen_evolution_jpower_sces.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
| CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |