
PDF Publication Title:
Text from PDF Page: 034
Batteries 2023, 9, 4 34 of 37 131. Cong,G.;Zhou,Y.;Li,Z.;Lu,Y.-C.AHighlyConcentratedCatholyteEnabledbyaLow-Melting-PointFerroceneDerivative.ACS Energy Lett. 2017, 2, 869–875. [CrossRef] 132. Astruc,D.WhyisFerrocenesoExceptional?Eur.J.Inorg.Chem.2017,2017,6–29.[CrossRef] 133. Chen,H.;Niu,Z.;Ye,J.;Zhang,C.;Zhang,X.;Zhao,Y.MulticoreFerroceneDerivativeasaHighlySolubleCathodeMaterialfor Nonaqueous Redox Flow Batteries. ACS Appl. Energy Mater. 2021, 4, 855–861. [CrossRef] 134. Wei, X.; Cosimbescu, L.; Xu, W.; Hu, J.Z.; Vijayakumar, M.; Feng, J.; Hu, M.Y.; Deng, X.; Xiao, J.; Liu, J.; et al. Towards High- Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species. Adv. Energy Mater. 2015, 5, 1400678. [CrossRef] 135. Cosimbescu, L.; Wei, X.; Vijayakumar, M.; Xu, W.; Helm, M.L.; Burton, S.D.; Sorensen, C.M.; Liu, J.; Sprenkle, V.; Wang, W. Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds. Sci. Rep. 2015, 5, 14117. [CrossRef] 136. Kim,H.;Yoon,T.;Kim,Y.;Hwang,S.;Ryu,J.H.;Oh,S.M.Increaseofbothsolubilityandworkingvoltagebyacetylsubstitution on ferrocene for non-aqueous flow battery. Electrochem. Commun. 2016, 69, 72–75. [CrossRef] 137. Tricot,Y.M.;Porat,Z.;Manassen,J.Photoinducedandredox-inducedtransmembraneprocesseswithvesicle-stabilizedcolloidal cadmium sulfide and multicharged viologen derivatives. J. Phys. Chem. 1991, 95, 3242–3248. [CrossRef] 138. DeBruler,C.;Hu,B.;Moss,J.;Liu,X.;Luo,J.;Sun,Y.;Liu,T.L.DesignerTwo-ElectronStorageViologenAnolyteMaterialsfor Neutral Aqueous Organic Redox Flow Batteries. Chem 2017, 3, 961–978. [CrossRef] 139. Liu,Y.;Goulet,M.-A.;Tong,L.;Liu,Y.;Ji,Y.;Wu,L.;Gordon,R.G.;Aziz,M.J.;Yang,Z.;Xu,T.ALong-LifetimeAll-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical. Chem 2019, 5, 1861–1870. [CrossRef] 140. Buhrmester,C.;Moshurchak,L.;Wang,R.L.;Dahn,J.R.PhenothiazineMolecules.J.Electrochem.Soc.2006,153,A288.[CrossRef] 141. Attanayake,N.H.;Kowalski,J.A.;Greco,K.V.;Casselman,M.D.;Milshtein,J.D.;Chapman,S.J.;Parkin,S.R.;Brushett,F.R.;Odom, S.A. Tailoring Two-Electron-Donating Phenothiazines to Enable High-Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries. Chem. Mater. 2019, 31, 4353–4363. [CrossRef] 142. Kaur,A.P.;Casselman,M.D.;Elliott,C.F.;Parkin,S.R.;Risko,C.;Odom,S.A.Overchargeprotectionoflithium-ionbatteriesabove 4 V with a perfluorinated phenothiazine derivative. J. Mater. Chem. A 2016, 4, 5410–5414. [CrossRef] 143. Milshtein,J.D.;Kaur,A.P.;Casselman,M.D.;Kowalski,J.A.;Modekrutti,S.;Zhang,P.L.;HarshaAttanayake,N.;Elliott,C.F.; Parkin, S.R.; Risko, C.; et al. High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy Environ. Sci. 2016, 9, 3531–3543. [CrossRef] 144. Ergun, S.; Casselman, M.D.; Kaur, A.P.; Attanayake, N.H.; Parkin, S.R.; Odom, S.A. Improved synthesis of N -ethyl-3,7- bis(trifluoromethyl)phenothiazine. N. J. Chem. 2020, 44, 11349–11355. [CrossRef] 145. Kowalski,J.A.;Casselman,M.D.;Kaur,A.P.;Milshtein,J.D.;Elliott,C.F.;Modekrutti,S.;Attanayake,N.H.;Zhang,N.;Parkin, S.R.; Risko, C.; et al. A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries. J. Mater. Chem. A 2017, 5, 24371–24379. [CrossRef] 146. Chai,J.;Lashgari,A.;Wang,X.;Williams,C.K.;Jiang,J.All-PEGylatedredox-activemetal-freeorganicmoleculesinnon-aqueous redox flow battery. J. Mater. Chem. A 2020, 8, 15715–15724. [CrossRef] 147. Attanayake,N.H.;Liang,Z.;Wang,Y.;Kaur,A.P.;Parkin,S.R.;Mobley,J.K.;Ewoldt,R.H.;Landon,J.;Odom,S.A.Dualfunction organic active materials for nonaqueous redox flow batteries. Mater. Adv. 2021, 2, 1390–1401. [CrossRef] 148. Romadina,E.I.;Komarov,D.S.;Stevenson,K.J.;Troshin,P.A.Newphenazinebasedanolytematerialforhighvoltageorganic redox flow batteries. Chem. Commun. 2021, 57, 2986–2989. [CrossRef] 149. Zhang,C.;Niu,Z.;Ding,Y.;Zhang,L.;Zhou,Y.;Guo,X.;Zhang,X.;Zhao,Y.;Yu,G.HighlyConcentratedPhthalimide-Based Anolytes for Organic Redox Flow Batteries with Enhanced Reversibility. Chem 2018, 4, 2814–2825. [CrossRef] 150. Zhang,C.;Qian,Y.;Ding,Y.;Zhang,L.;Guo,X.;Zhao,Y.;Yu,G.BiredoxEutecticElectrolytesDerivedfromOrganicRedox-Active Molecules: High-Energy Storage Systems. Angew. Chem. Int. Ed. Engl. 2019, 58, 7045–7050. [CrossRef] [PubMed] 151. Biso, M.; Mastragostino, M.; Montanino, M.; Passerini, S.; Soavi, F. Electropolymerization of poly(3-methylthiophene) in pyrrolidinium-based ionic liquids for hybrid supercapacitors. Electrochim. Acta 2008, 53, 7967–7971. [CrossRef] 152. Xing,X.;Liu,Q.;Wang,B.;Lemmon,J.P.;Xu,W.Q.Alowpotentialsolvent-miscible3-methylbenzophenoneanolytematerialfor high voltage and energy density all-organic flow battery. J. Power Sources 2020, 445, 227330. [CrossRef] 153. Montoto,E.C.;Nagarjuna,G.;Moore,J.S.;Rodríguez-López,J.RedoxActivePolymersforNon-AqueousRedoxFlowBatteries: Validation of the Size-Exclusion Approach. J. Electrochem. Soc. 2017, 164, A1688–A1694. [CrossRef] 154. Chen,C.;Zhang,S.;Zhu,Y.;Qian,Y.;Niu,Z.;Ye,J.;Zhao,Y.;Zhang,X.Pyridylgroupdesigninviologensforanolytematerialsin organic redox flow batteries. RSC Adv. 2018, 8, 18762–18770. [CrossRef] 155. Chai, J.; Lashgari, A.; Cao, Z.; Williams, C.K.; Wang, X.; Dong, J.; Jiang, J.J. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery. ACS Appl. Mater. Interfaces 2020, 12, 15262–15270. [CrossRef] 156. Antoni,P.W.;Golz,C.;Hansmann,M.M.OrganicFour-ElectronRedoxSystemsBasedonBipyridineandPhenanthrolineCarbene Architectures. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203064. [CrossRef] 157. Makarova,M.V.;Akkuratov,A.V.;Sideltsev,M.E.;Stevenson,K.J.;Romadina,E.I.NovelEthyleneGlycolSubstitutedBenzoxadia- zole and Benzothiadiazole as Anolytes for Nonaqueous Organic Redox Flow Batteries. ChemElectroChem 2022, 9, e202200483. [CrossRef]PDF Image | Advancing Non-Aqueous Redox-Flow Batteries
PDF Search Title:
Advancing Non-Aqueous Redox-Flow BatteriesOriginal File Name Searched:
batteries-09-00004-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
| CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |