logo

Nanomaterials beyond Graphene for Biomedical Applications

PDF Publication Title:

Nanomaterials beyond Graphene for Biomedical Applications ( nanomaterials-beyond-graphene-biomedical-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 036

J. Funct. Biomater. 2022, 13, 27 36 of 36 143. Ashkarran, A.A.; Swann, J.; Hollis, L.; Mahmoudi, M. The file drawer problem in nanomedicine. Trends Biotechnol. 2021, 39, 425–427. https://doi.org/10.1016/j.tibtech.2021.01.009. 144. Liu, Y.; Zhu, S.; Gu, Z.; Chen, C.; Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 2021, 69, 31–48. 145. Rhazouani,A.;Gamrani,H.;ElAchaby,M.;Aziz,K.;Gebrati,L.;Uddin,M.S.;AZIZ,F.Synthesisandtoxicityofgrapheneoxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Res. Int. 2021, 2021, 5518999. 146. Jayakumar, A.; Surendranath, A.; Mohanan, P. 2D materials for next generation healthcare applications. Int. J. Pharm. 2018, 551, 309–321. 147. Duch,M.C.;Budinger,G.S.;Liang,Y.T.;Soberanes,S.;Urich,D.;Chiarella,S.E.;Campochiaro,L.A.;Gonzalez,A.;Chandel,N.S.; Hersam, M.C. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011, 11, 5201–5207. 148. Bussy,C.;Ali-Boucetta,H.;Kostarelos,K.Safetyconsiderationsforgraphene:Lessonslearntfromcarbonnanotubes.Acc.Chem. Res. 2013, 46, 692–701. 149. Li, R.; Guiney, L.M.; Chang, C.H.; Mansukhani, N.D.; Ji, Z.; Wang, X.; Liao, Y.-P.; Jiang, W.; Sun, B.; Hersam, M.C. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 2018, 12, 1390–1402. 150. Kalantar-zadeh, K.; Ou, J.Z.; Daeneke, T.; Strano, M.S.; Pumera, M.; Gras, S.L. Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 2015, 25, 5086–5099. 151. Li, M.; Luo, Z.; Zhao, Y. Recent advancements in 2D nanomaterials for cancer therapy. Sci. China Chem. 2018, 61, 1214–1226. 152. Lin, H.; Chen, Y.; Shi, J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. 2018, 5, 1800518. 153. Lin,H.;Wang,X.;Yu,L.;Chen,Y.;Shi,J.Two-dimensionalultrathinMXeneceramicnanosheetsforphotothermalconversion. Nano Lett. 2017, 17, 384–391. 154. Chen, H.; Liu, T.; Su, Z.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74–89. https://doi.org/10.1039/c7nh00158d. 155. Han,X.;Jing,X.;Yang,D.;Lin,H.;Wang,Z.;Ran,H.;Li,P.;Chen,Y.Therapeuticmesoporeconstructionon2DNb2CMXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 2018, 8, 4491–4508. https://doi.org/10.7150/thno.26291.

PDF Image | Nanomaterials beyond Graphene for Biomedical Applications

nanomaterials-beyond-graphene-biomedical-applications-036

PDF Search Title:

Nanomaterials beyond Graphene for Biomedical Applications

Original File Name Searched:

jfb-13-00027.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP